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Abstract

The Indian Buffet Process (IBP) gives a probabilistic model of sparse binary
matrices with an unbounded number of columns. This construct can be used, for
example, to model a fixed numer of observed data points (rows) associated with
an unknown number of latent features (columns). Markov Chain Monte Carlo
(MCMC) methods are often used for IBP inference, and in this technical note, we
provide a detailed review of the derivations of collapsed and accelerated Gibbs
samplers for the linear-Gaussian infinite latent feature model. We also discuss
and explain update equations for hyperparameter resampling in a “full Bayesian”
treatment and present a novel slice sampler capable of extending the accelerated
Gibbs sampler to the case of infinite sparse factor analysis by allowing the use of
real-valued latent features.

1 Introduction

Say that we wish to model a set of observations by assuming that there are unobserved
or latent features associated with each observation. For example, a gene may be as-
sociated with latent features describing which biological pathways it participates in.
Observed levels of gene activity could then be modeled in terms of these latent fea-
tures.

In the linear-Gaussian latent feature model, we assume that each observed vector
x € RP is associated with a binary latent feature vector z € {0,1}%. Givena K x D
matrix of feature weights A, we say that x is distributed as a multivariate Gaussian ran-
dom variable with mean zA and diagonal covariance c%. For convenient reference,
these matrices and their dimensionalities are summarized in Table 1.

Putting a zero-mean Gaussian prior on the weights A, we then have the following
generative model for a N x D matrix X representing N observations drawn i.i.d. from
this model (temporarily treating the N x K latent feature matrix Z as given)

A~ N(0, Io%)
X ~ N(ZA, Io%).



Matrix Dimensionality Description

X N x D Observed D —dimensional features for items 1... N

Z N x K Binary latent K —dimensional features foritems 1... NV
A K xD Weight matrix mapping latent features to observations
A\ N x K Real-valued latent features (Infinite FA)

Table 1: Matrices of interest.

For a fixed, finite number of latent features K, it may be convenient to consider
each element of a given z to be a Bernoulli random variable, with each dimension being
associated with a Bernoulli parameter drawn from a conjugate Beta prior. However, the
Indian Buffet Process (IBP) [3] lifts the restriction to finite /, allowing models with
an unbounded number of latent features. The IBP can be expressed in terms of one
or two hyperparameters; here we assume the one-parameter model Z ~ I BP(«) for
simplicity.

Bayesian inference under this model requires the use of approximate inference
techniques such as Markov Chain Monte Carlo (MCMC) [3] or variational inference
[1]. MCMC inference via collapsed Gibbs sampling (i.e., integrating out the weight
matrix A in closed form) has been a successful approach, but suffers from scalability
problems even after exploiting the Sherman-Morrison-Woodbury formula (also known
as the matrix inversion lemma).

This computational bottleneck was eased in a scheme known as “accelerated Gibbs
[2] by maintaining the posterior over A instead of integrating out A entirely. This ap-
proach gets the best of both worlds, achieving computational complexity similar to an
uncollapsed sampler and mixing similar to a collapsed sampler.

Infinite Factor Analysis (FA) [4] uses the IBP prior over binary matrices Z, but
then takes the entry-wise Hadamard product of Z with a real-valued weight matrix
V € RVYXEK_ Unfortunately this extension “breaks compatibility” with the accelerated
Gibbs sampler.

In this technical note, we review the derivations of the standard and accelerated
Gibbs samplers for the standard IBP model, derive a slice sampling scheme for accel-
erated sampling under infinite FA, and present the hyperparameter sampling equations
for the “full Bayesian” treatment of these models.

i)

2 Collapsed Gibbs sampling

Given only the observed X and the model hyperparameters © = {«,0%,0%}, it is
fairly straightforward to derive the Gibbs sampling equations for the binary latent ele-
ments of Z and the real-valued hidden weight matrix A. However, this sampler may
suffer from long mixing times [2], especially if dimensionality D is large.

One approach to this issue is to integrate out the hidden weights A in closed form,
which is possible due to conjugacy between the Gaussian likelihood model and the
Gaussian prior on the weight matrix A. This reduces the state space of our sampler,



typically resulting in reduced convergence time. In this approach, we would sample Z
from the collapsed posterior P(Z|X, ©). From Bayes’ rule we have
P(Z,X[0)
P(Z|X,0) = . 1
(X 0) = S PXTz.0%, %) P(ZI) ®
When sampling an individual z;;, the denominator will cancel out. We therefore
restrict our attention to the numerator

P(2.X[0) = [ P(X|2Z. A.0%)P(Al3)P(Zla)dA. @

The IBP term P(Z|«) is insensitive to A and can therefore be pulled out of the
integral. Ignoring normalization, the remaining terms in the integral are given by

P(X|Z,A,c%) x exp {;tr[(x - ZA)T(X - ZA)]} 3)
X

P(A|0%) o exp {;tr[ATA]} )
A

where the diagonal covariance matrices Io% and 0% resolve to simple scalar
terms. Multiplying these expressions and simplifying recovers the following terms
o XX — 0 *XTZA — 0 PATZTX + 0 PATZTZA + 0P ATA (5)

wrapped inside a exp {tr[=(-)]} function. While this appears quite messy, we can
appeal to the linear algebra version of a classic trick.

2.1 Completing the square

While following two expressions are equivalent

z2 + bz (6)

b b2
(z+ 5)2 - 7
®)

the lower expression conveniently isolates the variable = within a single quadratic term.
The addition of the _sz is therefore known as “completing the square”. This trick has
an analog in linear algebra which applies when the quadratic coefficient matrix A is
nonsingular and symmetric

XTox +XTL+L'X Q)
(X+Q'D)TQX+Q'L)—(Q L)L =0. (10)



We are going to integrate out A by recovering a quadratic form in terms of A,
so we apply this technique to A. Note that the quadratic coefficient matrix of A is
(0%°Z"Z + 0 ;*I), which is indeed symmetric and invertible. Let M = (Z7Z +

2
Z%I )_1. Then our quadratic and linear terms in A are
A

Q= (oxM)! (11)
L=—-0"Z"X. (12)
(13)

Applying this rearrangement to Equation 5 and re-organizing terms, we have the
following expression

(MZ"X — A)T (63 M) H(MZTX — A) + o *(XT (I — ZMT'ZT) (14)

which isolates A within the single quadratic term on the left above. Substituting the
quadratic term only back into the exp of a trace function, we have a multivariate Gaus-
sian distribution via the following substitutions

p=MZ'X (15)
¥ = o3 M. (16)
(17)

Recall that Equation 14 is a rearranged version of the expression occurring within
the integral [ exp{—2itr[(:)]}. Since Equation 14 has the form of a multivariate Gaus-
sian with the mean and covariance shown above, this integral must evaluate to the
normalization term of that Gaussian distribution, which is given by

det[o M]P/2(27)KP/2, (18)

We can now express the likelihood of X (with A integrated out) as the product of
this normalization term and the expression exp{—3tr[(-)]} taken with respect to the X
term not depending on A from Equation 14. Restoring the normalization terms from
the original Equations 3 and 4, the full collapsed likelihood is

2 —1
P(X|Z,0) = [(%)ND/%E(N‘K)DaﬁD det[Z"Z + ");I]D/?] (19)

04
1 2
wexpd - tu[XT(I - Z(Z"Z+ XD 'ZN)X] b, (0)
20% o4

We can now finally evaluate the collapsed Gibbs sampling equation for a single z;x
entry as



Gibbs Sampling step  Operation Updated inversion Easy update

T

-1 T -1 Mz, z; M

before removez; (M~ —z;z;) M- P % g
T

) —1 T, \—1 Mz; z; M

after add Z; (M + Z; Zl) M — m

Table 2: Easy updates with matrix inversion lemma.

P(zip = UZ_(; 1), X,0) = P(X|zi = L,Z_(; 1y, 0%, 02) Pzi = 1Z_(i ), )
ey
where the first term can be calculated from Equation 19 and the second is simply the
IBP posterior probability [3]

m_qk
N

where m;;, is the number of latent feature vectors z; where z;;, = 1, and m_; j, is the
same count, omitting the latent vector z;.

P(ziy = 1|Z_( ), ) =

(22)

2.2 Rank-one updates

One difficulty with this approach is the need to recompute M = (ZTZ + Z—% * )71
with both z;;, = 1 and z;;, = 0 for every entry in Z during a single Gibbs “sweAep”. Itis
undesirable to have a computationally expensive operation like matrix inversion inside
the innermost loop of our sampler.

However, note that the matrix Z can be expressed as a sum of outer products of
each latent feature vector Y, z] z;. This means that calculating Z_; 5, by removing the
influence of a single vector z; is a rank-one update to M~!. Appealing to the matrix
inversion lemma, we can easily add or remove the influence of a single z; from M as
shown in Table 2. It is advisable to periodically recomputing the full inverse in order
to avoid the accumulation of numerical errors.

Unfortunately the X' ()X computation in P(X|Z, 0%, 0% ) is still expensive, and
must be computed 2 x N x K times per full Gibbs sweep.

3 Sampling new features

The collapsed Gibbs sampling scheme discussed in Section 2 allows us to sample z;,
the value of an existing feature & for a given observation . However, a critical feature
of the IBP prior [3] is that the number of latent features K is itself a random variable.
Let s; = |{k|zix = land ), 2z, = 1}| be the number of active “singleton” fea-
tures for z;. Under the IBP prior, this quantity is distributed according to POISSON( 7).
Given the observed X and latent Z, we can therefore calculate the posterior over s; as

P(si|X,Z,,0%,0%) o< POISSON (si\%P(X\si, Z,0%, 0124) . (23)



This observation allows the use of a Metropolis-Hastings [6] sampling scheme
where we propose a new number of singleton features s;. If we set our proposal dis-
tribution Q(5;]s;) = POISSON(5%), the Poisson distributions will cancel out of the
acceptance probability

B <P<si|x, Z,0)Q(5ils:), 1) @Y

leaving the simple acceptance probability

) P(X|3;, Z,O'godi)
1), 25
e (P<X|si,z,oivoi>’ *)

If we accept a proposal where $; < s;, we can simply delete any s; — 5; columns of
Z where z;;, = 1 and Zi, zi» 1, = 1. Since these latent features are only active within
zi, it does not matter which of them are deleted. Likewise if we accept a proposal
where 5; > s;, we simply add new columns to Z where only z;; = 1.

4 Sampling hyperparameters

Our model has three hyperparameters {«, 0%, 0% }, which we collectively refer to as
O. These values can be set manually in order to yield a model with specific properties
(e.g., the level of latent feature sparsity). Another approach is to treat these quantities
as random variables themselves, endowing them with hyperpriors. We can once more
make use of the mathematical convenience of conjugacy with the following priors

a ~ GAMMA(agy, by) (26)
Tx ~ GAMMA (ax,bx) 27
T4 ~ GAMMA (a,b4) (28)

(29)

where Tx is the precision, equal to the inverse variance a)}?, and likewise for 74 and
022. We now step through the sampling updates for each of these hyperparameters.

4.1 Weight variance 0%

In general form, the posterior update equations for a Gamma prior on Gaussian preci-
sion after n i.i.d. observations x; are given by

(30)

=
I

a+

n

> (@i — ) 31

i

SN
Il
o
+

N o) 3



For the weights A, we have n = K D observations with mean ¢ = 0 and variance
0%. Unfortunately the weights A are unobserved, but fortunately the favorable prop-
erties of the exponential family allow us to substitute the expected sufficient statistics
under the posterior P(A|X,Z,©). Letting E4 be the expectation over this distribu-
tion, we have

Ea | (Aka— 0| =) (Ba[(Ara —0)%])

k,d k.d

- Z (Ba [((Aga — pra) — (0 = pra))?])
kd
- Z(EA [(Aka — pira)’]

k.d

—2E4 [(A = pra)(0 — pira)]
+ E4 [(0 = pa)?])

= (de -0+ uid)
k,d

where pi;q and J,% 4 are the mean and variance of the element A4 under the Gaussian
posterior over A.
Sampling a new value of 0% then consists of taking the inverse of a sample from
N
GAMMA(aa + 5,ba + 5 (3, 4(0ka + p7)-

4.2 Noise variance 0%

Each data point x; is distributed according to a multivariate Gaussian distribution with
mean A”'z; and covariance 03 1. Again, it is computationally convenient to place a
GAMMA (a, b) prior on 0% . Letting A,4 be all rows of the d*" column of A, again we
can substitute the quantity >, > ,(xiq — z; A.q)? with its expectation with respect to
A.. This expectation can be easily computed after a few manipulations.



Ea Z(Xid —zlAg)?| = Z Ea [(xia — 2] Asa)?
id id

= Z EA [(Xid — ZlTA*d)Q]
id

= S Ea (G~ 7 ia,) — (& Aea — 2
id

= Z(l‘id — 2] Avq)® —2Ea [(Xia — 2; pia.,) (2] Ava — 2] p1a.,)]
id

T
+2z; X4z

= Z [(xld — Z,LTAA,kd)2 + Z;EAZZ‘]
i,d

As before, we use this value to update the Gamma parameter b= b+%EA {Zi‘d(xm — ziTA*d)Q} ,

and we update the other parameter as @ = a + %.

4.3 IBP parameter o

The Poisson distribution is also conjugate to the Gamma prior. After n i.i.d. Poisson
observations z; the the Gamma posterior update equations are

a4+ o;x; (32)
=b+n. (33)

Under the IBP, the quantity 17z, is distributed according to POISSON(«) for each
latent vector z [3]. We have n = IV observations and we can then drop the sum of all
nonzero latent features 17 Z1 into the @ update.

S Accelerated Gibbs sampling

Thus far we have focused on the collapsed Gibbs sampler. The primarily computational
bottleneck of the fully collapsed approach is that the marginalization of A induces
dependencies among all observations X. Even using the rank-one updates instead of
full matrix inversions, there is still an expensive matrix multiplication in the exponent
of the collapsed likelihood computation (Equation 20). This multiplication requires
O(DN?) operations and must be performed twice for each of the N K elements of Z
resulting in O(DK N?) complexity for a single collapsed Gibbs sampling sweep.

At the other extreme, the individual observations of X can be rendered completely
conditionally independent given A, Z, and © in the uncollapsed Gibbs sampler. How-
ever the resulting Markov chain will have a larger state space and therefore longer
convergence time.



Accelerated Gibbs Sampling [2] cuts a middle path between these approaches by
maintaining the posterior over A, P(A|Z,X,©). Individual observations are then
coupled only through this posterior, simplifying our calculations without blowing up
the state space. Gibbs sampling of Z will consist of removing the influence of a single
observation x; from this posterior, sampling z;, and then reincorporating the observa-
tion into P(A|Z, X, ©). Gaussian conjugacy allows us to easily update this posterior.

5.1 The posterior over A

In order to compute the posterior over A we return to the algebraic rearrangements we
performed when deriving the collapsed Gibbs sampler in Section 2. In that derivation,
our goal was to perform the integration

P(2:XI6) = [ P(X|Z.A.0%)P(Al)P(Zla)dA, (34)

by rearranging the integrand into a Gaussian form in A, such that the integration itself
had a closed-form solution (the normalization of that Gaussian form). Revisiting the
Gaussian form with parameters given by Equations 15 and 16, we can easily express
the posterior over A4, the latent feature weights for observed feature d

1
P(A.4lX,Z,0) x eXp{—E(MZTX*d — A )T (XM) T EMZT X g — Ava)}
(33)
Expanding our convenience variable M, we can express the parameters of this
multivariate Gaussian as

2
o _
pa., = (ZTZ+ =127 Xy (36)
0a
2 (T U%{ 1
Y4 =0%(Z z+0721)— . (37)
A

5.2 Sampling z;; using the posterior over A

We will now see how the use of this posterior can simplify our calculations by revisiting
the Gibbs sampling equation

Pleit = 12—, X, 0) o Pzia|Z_ (s, ) / P(X|Z, A, 0x)P(Alo)dA.
(38)
39)

We can break the integrand likelihood term into two parts: one for the i*” observa-
tion, and one for everything else



/P(xi|zi,A,aX)P(X,i|z,i,A,a§)P(A|aA)dA. (40)
(41

We then apply Bayes Rule, noting that the right-hand terms are proportional to the
posterior over A given all of the data except i*"* point

/P(Xi|ziaA7UX)P(A|X—i7Z—iaA7U,247O-§()dA' (42)
(43)

The integral now represents the expectation of P(x;|z;, A, ox) (a linear-Gaussian
distribution) taken over the (Gaussian) posterior of A given all other data points. This
allows us to once again evaluate the integral in closed form, yielding the conclusion
that x; is multivariate Gaussian with parameters

o, = ¥ i (44)
Yo, = 7! YAz + Tx. (45)
(46)

We now have an easy way to compute the x; likelihood term for purposes of Gibbs
sampling each element of z,. The only additional complication is adding and removing
the influence of the i*" data point over the posterior of A. For numerical stability
reasons, we compute these on the information form representation of the A posterior

Py =531 = 02277 + 0,21 (47)
ha = Papa = o0x2Z"X, (48)
(49)

in which case the updates to add or remove the influence of the i*” data point consist
of

PA — PA + o}fz?zi (50)

ha « ha+ 2z x0%% (51)

We can now bring all the pieces together - the pseudocode for doing 7" full sweeps
of accelerated Gibbs sampling with hyperparameter resampling is given in Algorithm 1.
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Algorithm 1: Pseudocode for accelerated Gibbs sampling.

fort=1,...,7T do
for:=1,...,Ndo
(Pa,ha) < remove influence of x;
fork=1,...,K do
‘ Sample z;; < P(zig|Z—ik, @) P(X;|2i, bz, X, )
end
(P4, ha) < restore influence of x;
Metropolis sample new features
end
Resample hyperparameters {ox, 04, a}

end

6 Real-valued latent features

Thus far we have considered the following generative model

ZZ ~ IBP(a)
A~ N(0, I0%)
X ~ N(ZA, Io%).

However, the restriction to binary latent features may be restrictive. We can loosen this
restriction by allowing real-valued latent features in the following model

Z ~ IBP(a)

V ~N(0, I)

A ~ N(0, Io%)

X ~N(ZoV)A, Io%)

where o denotes the element-wise (or Hadamard) matrix product. Here z;; retains its
previous role of determining whether or not a latent feature k is “active” for a given
example ¢, and v;; now specifies the “strength” of the feature within that example.
This formulation is known as infinite sparse factor analysis [4], and extends traditional
sparse factor analysis by explicitly modeling uncertainty with respect to the number of
latent factors.

The inclusion of V requires modification to previously developed inference schemes.
One approach would be to simply return to the uncollapsed Gibbs sampler, i.e., main-
tain the values of A in our sampler state. This results in relatively straightforward
sampling equations, but has the disadvantage of increasing the state space and slowing
convergence, as before.

This leads us to the development of collapsed sampling schemes for real-valued
latent features. Given V, we could simply use Z = Z o V as a drop-in replacement for

11



Z in the equations of the collapsed Gibbs sampler. We would also need to sample the V
values themselves'. However, this approach would suffer from the same computational
challenges as the collapsed sampler for the binary latent feature model.

6.1 Slice sampling V

We would therefore like to adapt the accelerated scheme to real-valued latent features.
As in the collapsed case, we can simply drop Z into the calculations for the posterior
of A and the likelihood of X. However, it is not immediately clear how to efficiently
sample V using the posterior of A.

Assuming z;; = 1, then we want to sample a value of v;; from the posterior

P(vig|v_ir, Z,X, 0) 0</P(Xi|Zi,Vz‘,AaUX)P(A|X—i,Z—nV—i,UA),P(Vi)dA

(52)
which reduces to the following equation after discarding terms not dependent on vy,

P(vir[Vv_in, Z,X,0) < N(2;" pra, 2i" L azi + Xx)P(vir,) (53)

where (114, 4) are the parameters from the posterior over A, as described in Equa-
tions 44.

This distribution is an unnormalized product of Gaussians, and therefore not amenable
to direct sampling. However, we can use a technique known as slice sampling [5] to
sample from this distribution. Slice sampling is a form of rejection sampling [5] that
decomposes the problem of sampling from an arbitrary unnormalized distribution p(y)
into two discrete steps, given a current value y and window boundaries (L, R) such
that L <yand R >y

1. sample w uniformly from [0, 5(y)]
2. sample § uniformly from [y — L,y + L]
3. if p(§) > u, accept new ¢ value (else reject).

This procedure defines a Markov chain whose stationary distribution consists of
points (y, p(y)) uniformly sampled from the hypograph of p(y). The y values can then
be considered to be samples from the distribution corresponding to the normalization of
p(y). We can apply this idea to sample v, by treating Equation 53 as the unnormalized
distribution.

A further complication is raised because of a common trick in statistical computing,
where the idea is to avoid numeric underflow by working in the log-domain. Here this
means that we modify Equation 53 to compute log(P(v;| . ..) instead of P(vg]...).
Letting y = P(vik|...), this means Step 1 in our slice sampler must now sample
¢ = log(u) such that u is drawn uniformly from [0, exp(log p(y))]-

A bit of manipulation shows how we can do this without leaving the log-domain.
First, we define our log-transformation ¢/ = f(u) = logu and its inverse u = f~1({) =

lwould this be easy, or not?
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exp (. Since u € [0,p(y)] and p(y) > 0, these functions are well-defined. Furthermore,
note that f~1(¢) is strictly monotonically increasing in £. Given our definition of the
log-variable ¢ and the uniform distribution over u, we can derive the inverse cumulative
distribution function of ¢ with respect to a uniform random variable a as

pdfy (u') = exp(—log(p(y))) (54)
cdfy(u) = P(U <) (53)
= [ pdtvtyan (56)
cdfr,(0) = P(L < £) 57
=P(f~(L) < 1) (58)
)
_ / L plista (59)
1(5
- / exp(— log(p(y)))du’ (60)
f=1(=00)
f7H)
—expl(~log(i(w) [ 61)
f=1(=00)
= exp(— log(B(») (I}, (62)
= exp(—log(p(y)))(f ' (£) — 0) (63)
= exp(—log(p(y))) exp(£) (64)
= exp({ — log(p(y)))cdf; ' (a) =log(a) + log(p(y)).  (65)
(66)

We can therefore sample ¢ by drawing a uniformly from [0, 1] and then computing
¢ = cdf; (a) = log(a) + log(f(y)). Given this ¢ value, we can now either accept or
reject a newly sampled candidate value of v;;, based on the log of the unnormalized
probability in Equation 53.

6.2 Sampling z;;

We notice another complication raised by the use of real-valued latent feature weights
V when we attempt to sample z;;. Previously in accelerated Gibbs sampling, we had
to evaluate the integral

/P(xi\zi, Aox)P(AIX_;,Z ;A 0%, 0%)dA. (67)
The addition of real-valued latent features forces us to either maintain “phantom”

v;i values connected to currently inactive binary latent features z;y, or to integrate with
respect to the currently inactive v,

13



/</P(XZ‘Z1‘,VZ‘,A,U)()P(AXi,Zi,A,O‘i,O‘%)dA)) P(Vik)dvik. (68)

In the “phantom” approach, we could simply re-sample v;;, from the Gaussian
prior P(v;x) each iteration. Alternatively, we could numerically evaluate the Monte
Carlo estimate of the integral in Equation 68 by taking the average value of the inner
expression over multiple v, samples from P(v).

6.3 New features via Metropolis-Hastings

Finally, we examine how the sampling of totally new latent features is affected by
real-valued latent feature weights. Recall that our Metropolis step for the binary latent
feature model proposes a value for k¢, the number of “singleton” latent features
for the current example. We can extend this proposal distribution by simply jointly
proposing real-valued latent values v;;, for each of these singleton features, drawn
from the Gaussian prior P(v;x). The only change to the likelihood term is that ¥, is
increased by Zﬁ,‘jﬂ"ﬁ vZ . This result is intuitive: we are simply considering a latent
model where we are adding a v-weighted sum of i.i.d. Gaussian A values, increasing
the variance ¥ x. Other than this modification, the Metropolis-Hastings procedure is
unchanged.

6.4 Practical issues

Initialization of this model can be very important to good performance. A common
option is to run a parametric version of the model with some fixed K and using that
state to initialize the infinite model. Another strategy is to run inference with fixed
hyperparameters for some number of samples before incorporating hyperparameter re-
sampling.

As the MCMC chain runs, it may be useful to hard-code “guards” on hyperparam-
eter values - for example, we may wish to enforce that a should not grow beyond a
certain value. Finally, it can be extremely helpful to monitor predictive log-likelihood
of both in-sample and out-of-sample observations.
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